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5 

 Introduction 

Games embody the human experience. They test our ability to learn and improvise, our 

imaginations, and our intellect. They entertain us and push our instinctual sense of competition. 

We can consider the search for general Artificial Intelligence (AI) a game itself as a solution will 

epitomize these same themes that are central to what it means to be human. But measuring the 

human experience is difficult. Instead, if we can explore and design computational systems that 

can beat humans at games, then we can discover answers to questions about human intelligence. 

Furthermore, through solving game-related problems we can learn something new about issues 

in real-life like planning [1] and decision making [2]. And so, the histories of games and AI are 

expectedly intertwined. 

 AI, Games, and Hearthstone 

1.1.1 Brief History of AI and Games 

The modern history of AI and games can be traced back to 1928 when John von 

Neumann proved the minimax theorem. Minimax is an intuitive game-playing strategy and states 

that, “…you should always choose a move such that, even if the opponent chooses the absolute 

best response to that move, and to each of your future moves, you will still get the highest score 

possible at the end of the game,” [3]. Twenty-two years later, in 1950, Philosophical Magazine 

published Claude Shannon’s groundbreaking paper on a computer program that uses the 

minimax algorithm to play chess [4]. Shannon’s work is widely regarded as the first to apply 

computer AI methods to games [3]. Then in 1997, twenty-seven years after Shannon’s original 

work, IBM’s Deep Blue computer famously defeated chess world champion Garry Kasparov and 

announced a new era of superhuman AI [5]. Finally, and most recently, in 2016, DeepMind’s 

AlphaGo—which uses deep computational neural networks and Monte Carlo Tree Search—
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conquered the combinatorically explosive game of Go: a single game of Go has 250150 possible 

move sequences. AlphaGo defeated the European Go champion Fan Hui five times in five games 

[6]. 

1.1.2 Hearthstone 

AlphaGo’s success is undoubtedly one of the greatest achievements in modern AI and 

Machine Learning (ML) research. However, AI and ML still struggle to master turn-based 

strategy games that add characteristics such as nondeterminism and partial information to an 

already combinatorically complex state-action space. Hearthstone, a collectible card game by 

Blizzard Entertainment for PC and mobile, packages these characteristics in manner that is easy 

to learn, but hard to master, and therefore has recently become a testbed for applying AI and ML 

techniques to games [7].  

Enter, Hearthstone. Hearthstone is a turn-based collectible card game between two 

players. Players choose from nine heroes, each having unique cards and abilities, and construct a 

deck of thirty cards. During a match, players spend mana crystals to play cards and damage their 

opponent with the goal of reducing the opponent’s health to zero. See Appendix A for a brief 

guide to Hearthstone’s rules and mechanics. 

1.1.3 Formal Game Description 

Since Blizzard has not published an official rulebook for Hearthstone, players have taken 

it upon themselves to create a full, unofficial rulebook explaining the game’s mechanics and 

processes [8]. Furthermore, Andersson and Hesselberg provide a formal description of 

Hearthstone as a problem for AI research [9]: 

• Imperfect Information – Hearthstone relies on uncertainty and limiting players’ 

access to certain information throughout the game. Players cannot see their 



  7 

 

opponent’s hand or deck until cards are played or shown through certain game 

mechanics (i.e. drawing a card with a full hand). Furthermore, players’ decks are 

shuffled prior to play, thus hiding the order of cards in players’ decks. At the end of a 

game, any cards that have not been played (cards remaining in players’ hand and 

deck) are not revealed to the opponent. This forces players to anticipate various 

possibilities and predict opponents’ moves. 

• Stochastic Outcomes – Hearthstone heavily utilizes randomness. In certain situations 

throughout a duel, the stochastic nature of the game can make outcome prediction 

exceedingly difficult. 

• Complexity – When we performed the experiments presented in this thesis, 

Hearthstone had 2,996 playable cards, and Blizzard releases roughly 140 new cards 

every three or four months [10]. The number of cards, the number of combinations of 

cards that could be included in a single deck are just one aspect of Hearthstone’s 

complexity. Separately, a single turn of Hearthstone is incredibly complex as we will 

explain in Section 2.1. 

• Zero-Sum – Hearthstone is a two-player game, and only one can win. 

• Turn-Based – A Hearthstone duel is inherently discretized through players taking 

alternating turns until the game’s end. 

• Finite – A single turn in a Hearthstone match has a 75 second time limit. Though 

players can elect to end their turn at any time before the limit is reached. And a game 

of Hearthstone ends in a draw if it reaches the 90th turn. 
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 Machine Learning, AI, and Combinatorial Fusion Analysis (CFA) 

Modern scientific inquiry and knowledge discovery processes have faced a complex and 

challenging environment. It is an interconnected, data-centric, information-based, cyber-

physical-natural ecosystem. For example, a variety of sensor and imaging technologies have 

generated large and diverse data in domains ranging from biomedicine, social networks, to 

economics, climate change, health care, and cybersecurity. Researchers and professionals have 

found the big data deluge and information overload to be challenging [11]. 

Machine learning and AI has seen fundamental advances in support vector machines with 

the kernel method and the AdaBoost ensemble methods [12, 13]. Ensemble and data fusion 

methods have been used to combine decision trees, pattern classifiers, information retrieval 

systems, molecular similarity measures, and artificial neural nets [14, 15, 16, 17, 18, 19].  More 

recently, combinatorial fusion, a paradigm similar to ensemble method and data fusion, was 

proposed and developed to combine multiple scoring systems (MSS) using rank-score 

characteristics (RSC) functions and cognitive diversity [20, 21, 22, 23]. Combinatorial fusion, 

and the general combination of multiple scoring systems has been used in various domains 

including science, technology, society, and business such as target tracking, virtual screening, 

cognitive neuroscience, ChIP-seq peak detection, portfolio management, and similarity ranking 

[24, 25, 26, 27, 28, 29]. 

In combining multiple scoring systems, combinatorial fusion considers both score and 

rank combinations. Score combination operates on the parametric Euclidean score space, while 

rank combination operates on the non-parametric permutation rank space. The relation between 

rank and score values of a data item by a scoring system is defined as the rank-score 

characteristic (RSC) function [20, 21, 30, 23]. Hsu and Taksa [22] provides a condition, 
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involving cognitive diversity, under which rank combination performs better than score 

combination. 

 Improving Hearthstone Game Strategy with Model Fusion using CFA 

Model fusion, as a special case of combinatorial fusion where each model is considered 

as a scoring system, combines diverse and “good enough” models to achieve better results in 

forecasting, prediction, or analytics. In this thesis, we use multiple machine learning models to 

analyze a dataset of 500 Hearthstone games with a set of features determined by previous game 

experience and expert systems. Each model produces a scoring system with a score function and 

a rank function. The RSC function is then used to characterize the ranking (or scoring) behavior 

of the model. Each of the combinatorial combinations of these models is then evaluated using 

precision criterion. 

Let 𝐷 =  {𝑑1, 𝑑2, . . . , 𝑑𝑛} be a set of n games. Let 𝐴 be a model, or scoring system, of the 

dataset 𝐷 which assigns a score to each of the games 𝑑𝑖 in 𝐷. The score function 𝑠𝐴 ∶ 𝐷 → ℝ, 

assigns a real number in ℝ to each game 𝑑𝑖 in 𝐷. The rank function 𝑟𝐴 ∶ 𝐷 → 𝑁, where  

𝑁 =  {1, 2, . . . , 𝑛} and 𝑛 = |𝐷|, is obtained by sorting the score values into descending order  

and assigning a rank order of the score value to the game having that score value. For a scoring 

system 𝐴 with scoring function 𝑠𝐴 and its corresponding rank function 𝑟𝐴, the rank-score 

characteristic (RSC) function 𝑓𝐴 ∶ 𝑁 → ℝ was defined by Hus, Shapiro, and Taksa as the 

following formula [20, 21, 30, 23]: 

For two models 𝐴 and 𝐵, score functions 𝑠𝐴 and 𝑠𝐵, and rank functions 𝑟𝐴 and 𝑟𝐵, the 

score function of the score combination (SC) and the score function of the rank combination 

(RC) of the two scoring systems are defined as: 

𝑓𝐴(𝑖) = 𝑠𝐴(𝑟𝐴
−1(𝑖)) for 𝑖 in 𝑁 

Equation 1.1: Rank-Score Characteristic (RSC) Function 𝑓𝐴 
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Furthermore, the rank functions of the SC and RC, 𝑟𝑆𝐶 and 𝑟𝑅𝐶, can be derived 

accordingly. For models 𝐴 and 𝐵 and RSC functions 𝑓𝐴 and 𝑓𝐵, respectively, the cognitive 

diversity, 𝐶𝐷(𝐴, 𝐵), is defined as: 

 Overview 

In this master’s thesis, we demonstrate that model fusion using combinatorial fusion 

analysis (CFA) can accurately predict the winner of a game of Hearthstone. Chapter 2 begins by 

providing the empirical analysis of Hearthstone’s complexity, which segues into an outline and 

comparison of previous works that have applied AI and ML to Hearthstone. This section gives 

context to our work within the current research landscape and presents the logic behind our 

search for a different method of using AI and ML for Hearthstone. The chapter concludes with 

the basics of using CFA for model fusion and the techniques we used for evaluating fusion 

performance. 

Chapter 3 highlights the simulation environment we used as the foundation for 

constructing and implementing our system. We continue with details of our methods for dataset 

construction and feature selection. Finally, Chapter 3 wraps up the specifics of performing CFA 

on Hearthstone data and model selection. Chapter 4 provides our experiments and results. This 

𝐶𝐷(𝐴, 𝐵) =  √∑(𝑓𝐴(𝑖) − 𝑓𝐵(𝑖))2

𝑛

𝑖=1

 

Equation 1.4: Cognitive Diversity of Two RSC Functions in terms of RSC Functions 𝑓𝐴 and 𝑓𝐵 

 

𝑠𝑆𝐶(𝑑𝑖) =
𝑠𝐴(𝑑𝑖) + 𝑠𝐵(𝑑𝑖)

2
 

Equation 1.2:  Score Function for Score Combination SC(A, B) 

𝑠𝑅𝐶(𝑑𝑖) =
𝑟𝐴(𝑑𝑖) + 𝑟𝐵(𝑑𝑖)

2
 

Equation 1.3: Score Function for Rank Combination RC(A, B) 
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thesis concludes with Chapter 5 where we summarize our conclusions and provide examples of 

how we could continue to build upon these conclusions in the future.
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 Hearthstone’s Complexity and Model Fusion 

We can illustrate the mathematical support for the use of AI and ML techniques to 

predict and improve Hearthstone strategies. Then, with the game’s complexity in mind we 

present some of the existing methods for applying AI and ML to Hearthstone. Subsequently, we 

describe the specifics of combinatorial fusion analysis (CFA) for model fusion and the 

techniques employed for evaluating the system’s performance. 

 Hearthstone’s Theoretical State-Action Space Complexity 

The size of the state-action space for a game of Hearthstone is one of the key difficulties 

in predicting the outcome of a game of Hearthstone and/or developing an effective move 

selection algorithm. In fact, the complexity of a single Hearthstone turn makes developing an 

effective, rule-based AI agent completely unreasonable. We can demonstrate this issue by 

finding the maximum 𝑵 possible unique sequences of moves a player could execute before 

ending their turn. We find 𝑵 by calculating the product of the following: 

• The 𝑨 possible attacking moves 

• The 𝑻! different orders in which a player can execute 𝑻 available attacks 

• The 𝑴𝑷 ways 𝑷 cards in a player’s hand can be played on 𝑴 targets 

• The 𝑷! different orders in which 𝑷 cards can be played 

Generally, 𝑨 is calculated as the number of opponent’s attackable characters raised to the 

count of a player’s characters that can attack. We find the value of 𝑨 according to Hearthstone’s 

rules and mechanics such as which minions are exhausted, frozen, have taunt, etc. 𝑻 is the total 

number of attacks available to a player. Finally, like 𝑨, the rules of the game are considered 

when determining 𝑴 and 𝑷. Together, the formula for 𝑵 is defined as: 
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With maximum values of 𝑨 =  88, 𝑻 =  30, 𝑴 =  16, and 𝑷 =  10 (derivations 

explained in Appendix B), the maximum value of 𝑵 ≈  1.78 ×  1058. It is important to note, 

however, that Equation 2.1 does not account for cards with random outcomes. Factoring in these 

types of cards would exponentially increase 𝑵. Also, technically speaking, there are possible 

scenarios in which 𝑷 approaches +∞. 

While the probability of 𝑵 reaching this maximum value is infinitesimal, we must 

consider it as the theoretical upper bound. In most real game situations 𝑵 is drastically smaller. 

As moves are executed during a player’s turn, the values of 𝑨, 𝑻, 𝑴, and 𝑷 will almost always 

decrease as a result of spending mana crystals, the cost of the cards the player’s hand, the death 

of the player’s and opponent’s minions, etc. 

 Existing Methods 

Since the recent successes of DeepMind’s AlphaGo [31] and AlphaZero [32], the use of 

games for artificial intelligence and machine learning research has dramatically increased. And, a 

substantial number of researchers have published the results of applying different methods for 

game playing AI—including DeepMind’s own method—to Hearthstone. One way of evaluating 

our work is to compare our results with those achieved through existing work in the field. 

2.2.1 Rule-Based 

There are a handful of open-source Hearthstone simulators, including the one used in this 

project, SabberStone [33]. Many of these simulators include simple AI agents that work out of 

the box. These agents use basic heuristics to select moves that are predictable and not 

competitive. 

𝑁 = 𝐴 × 𝑇! × 𝑀𝑃 × 𝑃! 

Equation 2.1: Theoretical Maximum Hearthstone Turn Complexity 
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2.2.2 Monte Carlo Tree Search 

In addition to being the foundational algorithm of AlphaGo, Monte Carlo Tree Search 

(MCTS) is, by a wide margin, the most popular algorithm applied to Hearthstone. Playing 

Hearthstone with various boosted versions of MCTS have shown promising results. Some 

methods for boosting MCTS for Hearthstone include: 

• Using domain specific knowledge [34], 

• Advanced pruning techniques for effective rollout policies through bucketing similar 

chance events [35], and 

• Applying a trained value network to MCTS for iterative network enhancement 

through self-play [7]. 

Each of these examples improve upon the performance of “vanilla” Monte Carlo for 

Hearthstone. However, none of these algorithms can beat a Legend ranked player more than 50% 

of the time. In all our research, the agent developed by Świechowski, Tajmajer, & Janusz has the 

highest winning percentage against Legend ranked players at 43% when going 2nd. However, 

when going 1st, that same agent wins only 17% of the time against Legend ranked players [7].  

Therefore, the core motivation for this project was to use combinatorial fusion analysis to 

develop a combination model that outperforms each of the individual models that would have the 

potentional to be better than the existing Hearthstone playing AI agents. 

 Combination of Models using CFA 

We used five machine learning models, which we list in Section 3.3.2, for our 

combiniatorial fusion analysis. After finding the score and rank functions for each of the five 

individual models, we find the score function of the score combination and the score function of 

the rank combination for all combinatorial combinations. This produces 31 different scoring 
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systems, which we then evaluate and compare using the precision criterion as explained in 

Section 1.3. 

 Performance Evaluation 

We use precision analysis to evaluate the performance of our models. Calculating the 

precision of a model is quite straightforward. First, we count the dataset’s positive 

classifications. For Hearthstone, this is the number of games in which the player under analysis 

wins. Next, for each system, the games in the dataset are sorted by score in descending order, or 

by rank in ascending order. Finally, we can find the precision of the model by calculating the 

percentage of the top ranked games of the sorted dataset that have a positive classification. For 

our dataset of 500 games, this is the percentage of the top 291 games.  

It is important to recognize that the precision of a model is different from its accuracy. A 

model’s accuracy reflects its ability to correctly classify individual instances of a dataset. 

Precision, however, can only be determined once a model’s score and rank functions have been 

defined and applied to each item in the dataset.
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 System Implementation 

This chapter details the construction and implementation of our system, the methods used 

for data creation and processing, the strategy for applying CFA to Hearthstone. We also take the 

first section to describe the tools and environment that make up the backbone of the project. 

 Simulation Environment 

Blizzard does not allow for computer AI agents to interact with the Hearthstone client. 

Therefore, we used HearthSim’s SabberStone simulator, which is written in C#, for the 

construction of the dataset and all AI implementation, simulation, and testing [33]. We chose 

SabberStone for the following reasons: 

• It is the most complete open-source simulator of those available (nearly all playable 

cards are implemented) . 

• It is regularly updated and maintained. 

• It comes with a straightforward framework for implementing and utilizing user-built 

AI agents. 

• It is the simulator of choice for the annual Hearthstone AI Competition, which is in its 

third year, is sponsored and presented by the IEEE Conference on Games, and 

provides contestant’s agents for download and use [36]. 

 Data and Features 

3.2.1 Dataset 

Our dataset is comprised of 500 simulations between two separate instances of an 

existing MCTS AI agent. Each simulation is saved as a CSV with an action-by-action record of 

the key information available to both players at every game-state. These observations include 
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information such as each player’s health, the number of minions each player controls, the 

number of cards in each player’s hand, etc. 

 Simulation Agents 

We used Kai Bornemann’s Tyche Agent to generate our dataset. Bornemann’s agent uses 

MCTS and participated in the Hearthstone AI Competition in both 2018 and 2019, placing in the 

top 4 in both years in both the Premade and Custom Deck Playing Tracks. As explained in the 

previous section, the competition publishes contestant’s agents for download and use [37]. 

 Simulation Details 

For each of the 500 simulations, we use two instances of Tyche Agent, one as the Paladin 

hero class and one as the Mage hero class, using the respective, basic decks shown in Appendix 

C. We use basic decks, decks that do not feature cards with complex abilities or effects, to limit 

the variability of each simulation. The idea is that a model built from the simplest scenario 

should be applicable to more complex scenarios. At the end of every simulation, we add the 

winner of the match as the class label.  

3.2.2 Feature Set 

We extracted twelve features from our dataset as the input for the machine learning 

models used in this project. In [38], Bursztein explored the relationship between five different 

metrics and predicting winning games of Hearthstone. We used these metrics as five of our 

twelve features because, like our system, Bursztein’s model predicts a game’s winner based on 

cumulative features observed throughout a match: 

• Mana Advantage – The difference between the total mana each player has spent. 

• Board Mana Advantage – The difference between the sum of the mana cost of both 

players’ minions in play. 
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• Board Count Advantage – The difference in the count of minions in play for each 

player. 

• Draw Advantage – The difference in the total number cards each player has drawn. 

• Hand Size Advantage – The difference in the number of cards in each player’s hand. 

Bursztein’s results show that each of these metrics have predictive power, with board 

mana advantage and mana advantage ranking as the top two features for classifying winning 

games. Furthermore, Bursztein’s work inspired the rest of the features: 

• Available Attack Advantage – The difference in the sum of attack values available 

to each player (including heroes). 

• Available Defense Advantage – The difference in the sum of the health of taunt 

minions under each player’s control. 

• Board Bonus Advantage – The difference in the total bonus values of each player’s 

board. These values were inspired by Bursztein’s work on card appraisal [39]. 

• Board Health Advantage – The same as available defense advantage except the 

health of all minions is counted. 

• Board Ratio Advantage – The difference in the sum of the ratios of each player’s 

minions’ attack to health. 

• Deck Count Advantage – The difference in the number of cards remaining in each 

player’s deck. 

• Health Advantage – The difference in the players’ total health remaining (armor is 

included as health points). 
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 CFA with Hearthstone Data 

3.3.1 Preprocessing the Data for the Scoring Systems 

For each model, we derived a scoring system from the weight each feature contributes 

towards predicting the winner of a game. As previously explained, every simulation produces 

CSV file containing an action-by-action recording of all key observations throughout the game 

with the winner as the class label. 

We built a Python program that extracts the feature set from each game and feeds them 

into the five models. While some of the systems described in Section 2.2 predict the winner of a 

game when given a set of feature values from a single game-state, our system is designed to 

predict the winner of an entire game. Therefore, as mentioned previously, our preprocessing 

procedure extracts the cumulative values of each feature at the end of the game.  

Practically speaking, we chose this method because we believe that learning from a 

game’s cumulative results may solve the issues that arise when handling uncertainty. Issues that 

present a critical hinderance to MCTS Hearthstone stystems. In order to effectively apply MCTS 

to Hearthstone, a system must implement solutions to the problems associated with the game’s 

partial information such as estimating the opponent’s hand and deck for rollouts. By looking at a 

game in its entirety, our system assumes that the specific moves an opponent makes throughout 

the course of the game do not matter as much as how those moves contribute to the game’s 

culmination. 

3.3.2 Model Selection 

CFA relies on the derivation of a scoring function from each individual model. These 

scoring functions are then used to compute a score for each instance in the dataset. Therefore, the 

simplest models to include in CFA are those that calculate feature weight or Gini importance. 
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Each score function finds the score of each game as the weighted sum of its features, see 

Equation 3.1. Where 𝑴 is an individual model, 𝒅𝒊 is a single game, 𝒏 is the number of features 

in 𝒅𝒊, 𝒘𝒋 is the 𝒋𝒕𝒉 weight in 𝑴, and 𝒈𝒋 is the 𝒋𝒕𝒉 feature for all 𝒊 games in the dataset. 

With this criterion in mind, we chose the following five models from scikit learn for CFA 

of Hearthstone game data [40]: 

• Liblinear SVM 

• Linear Regression 

• Decision Tree 

• Random Forest 

• AdaBoost 

3.3.3 Combining the Models 

Once each of the five models has been trained on the feature set using 5-fold cross 

validation, we compute the score of each of the 500 game simulations according to Equation 3.1. 

We then find the score of the score combination function and the score of the rank combination 

function, as described in Section 1.3, for all combinatorial combination of the five individual 

models. 

𝑠𝑀(𝑑𝑖) = ∑ 𝑤𝑗 ∗ 𝑔𝑗(𝑑𝑖),  ∀ 𝑖 = 1,2, … ,500

𝑛=12

j=1

 

Equation 3.1: Weighted Sum of Feature Values 
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 Experimental Results and Discussion 

In this chapter, we present the results of applying combinatorial fusion analysis to 

Hearthstone game data. After introducing the individual scoring systems and their results, we 

move onto the results of the best combinations. Next, we present the performance evaluation of 

every system and the effect of cognitive diversity between Hearthstone game scoring systems. 

 Scoring Systems 

4.1.1  Individual Models: Feature Weights and Scoring Functions 

 As discussed in the previous chapter, the first step of CFA is to calculate the score and 

rank functions of the individual models. For readability, we refer to SVM as System A, Linear 

Regression as System B, Decision Tree as System C, Random Forest as System D, and 

AdaBoost as System E. The initial phase of training produced the feature weights plotted in 

Figure 4.1 and shown in Table 4.1, and the subsequent score function tables.   

Figure 4.1: Feature Weights by Model 
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Rank fA Game W/L 

0 1 255 1 

1 0.922715 471 1 

2 0.90884 286 1 

3 0.894606 455 1 

⋮ ⋮ ⋮ ⋮ 
277 0.543699 29 1 

278 0.542092 424 1 

279 0.536899 136 1 

280 0.535842 150 1 

281 0.534 75 1 

282 0.520266 499 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0806049 153 0 

496 0.0581929 443 0 

497 0.036906 466 0 

498 0.0237644 320 0 

499 0 354 0     
 Table 4.3: RSC Function – System B Table 4.2: RSC Function – System A 

Rank fB Game W/L 

0 1 255 1 

1 0.936481 122 1 

2 0.916306 333 1 

3 0.894875 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.551098 172 1 

278 0.551071 266 1 

279 0.544922 499 1 

280 0.543442 29 1 

281 0.541668 32 1 

282 0.539524 387 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0758743 354 0 

496 0.0671501 320 0 

497 0.0253601 8 0 

498 0.0141678 466 0 

499 0 153 0 
 

Feature 
Weights 

A B C D E 

Available Attack Adv. 0.94801 0.00000 1.00000 1.00000 1.00000 

Available Defense Adv. 0.00000 0.00000 0.01992 0.07942 0.33846 

Board Bonus Adv. 0.42206 0.00000 0.02426 0.12958 0.57692 

Board Count Adv. 0.09788 0.00000 0.05017 0.61542 0.14615 

Board Health Adv. 0.50109 0.00000 0.01421 0.52599 0.08462 

Board Mana Adv. 0.61316 0.00000 0.62883 0.88005 0.00000 

Board Ratio Adv. 0.27837 0.00000 0.01352 0.37170 0.09231 

Deck Count Adv. 1.00000 1.00000 0.03553 0.04179 0.33539 

Hand Size Adv. 0.06882 0.00000 0.01029 0.00000 0.37692 

Health Adv. 0.42568 0.00000 0.02650 0.05565 0.69231 

Mana Adv. 0.10376 0.00000 0.00000 0.02765 0.25385 

Draw Adv. 0.17627 1.00000 0.03375 0.04201 0.28769 

      
Table 4.1: Feature Weights by Model 
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Rank fD Game W/L 

0 1 255 1 

1 0.893895 122 1 

2 0.850151 333 1 

3 0.849531 286 1 

⋮ ⋮ ⋮ ⋮ 
277 0.518855 29 1 

278 0.5181 251 1 

279 0.517164 22 1 

280 0.51658 199 1 

281 0.511193 56 0 

282 0.510378 62 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0762874 466 0 

496 0.040353 354 0 

497 0.0355949 320 0 

498 0.00817378 8 0 

499 0 153 0 
 

Table 4.4: RSC Function – System C Table 4.5: RSC Function – System D 

Table 4.6: RSC Function – System E 

Rank fC Game W/L 

0 1 255 1 

1 0.85098 426 1 

2 0.833833 122 1 

3 0.818835 73 1 

⋮ ⋮ ⋮ ⋮ 
277 0.477537 199 1 

278 0.475749 233 1 

279 0.470163 251 1 

280 0.465393 307 1 

281 0.46514 62 0 

282 0.458611 268 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0550915 208 0 

496 0.0227144 320 0 

497 0.00592327 153 0 

498 0.00301707 8 0 

499 0 354 0 
 

Rank fE Game W/L 

0 1 255 1 

1 0.984921 122 1 

2 0.975777 162 1 

3 0.971502 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.594341 229 1 

278 0.593277 465 1 

279 0.593221 205 1 

280 0.592282 424 1 

281 0.590152 268 1 

282 0.585165 136 1 

⋮ ⋮ ⋮ ⋮ 
495 0.140535 432 0 

496 0.103536 320 0 

497 0.0767977 153 0 

498 0.0523064 354 0 

499 0 466 0 
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4.1.2 Score of SC and Score of RC Results for Top Combinations 

From the score and rank functions of the individual models we can derive the same 

functions for other combinations. Here, we include the RSC Function of both the score and rank 

combination tables for the top combinations of ABE and ABDE, respectively. For the score and 

rank combination tables not included here, see Appendix D.  

Table 4.19.a: RSC Function of the 

Score Combination – System ABE 

Table 4.19.b: RSC Function of the 

Rank Combination – System ABE 

Rank s(SC(ABE)) Game W/L 

0 1 255 1 

1 0.928279 122 1 

2 0.925506 333 1 

3 0.910351 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.561438 199 1 

278 0.555339 387 0 

279 0.554036 266 1 

280 0.550088 136 1 

281 0.548401 465 1 

282 0.543436 499 1 

⋮ ⋮ ⋮ ⋮ 
495 0.106795 8 0 

496 0.0648168 320 0 

497 0.0524675 153 0 

498 0.0427269 354 0 

499 0.0170246 466 0 
 

Rank s(RC(ABE)) Game W/L 

0 0 255 1 

1 2.33333 122 1 

2 3 333 1 

3 3.66667 286 1 

⋮ ⋮ ⋮ ⋮ 
277 275 29 1 

278 277.667 387 0 

279 279.667 266 1 

280 282.667 465 1 

281 282.667 499 1 

282 284 136 1 

⋮ ⋮ ⋮ ⋮ 
495 492 249 0 

496 496.667 320 0 

497 497 153 0 

498 497.333 354 0 

499 498 466 0 
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Table 4.29.a: RSC Function of the 

Score Combination – System ABDE 

Table 4.29.b: RSC Function of the 

Rank Combination – System ABDE 

Rank s(SC(ABDE)) Game W/L 

0 1 255 1 

1 0.919683 122 1 

2 0.906667 333 1 

3 0.894114 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.550223 199 1 

278 0.546593 387 0 

279 0.54621 465 1 

280 0.542886 136 1 

281 0.541672 499 1 

282 0.541318 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0821398 8 0 

496 0.0575113 320 0 

497 0.0421335 354 0 

498 0.0393506 153 0 

499 0.0318403 466 0 
 

Rank s(RC(ABDE)) Game W/L 

0 0 255 1 

1 2 122 1 

2 2.75 333 1 

3 3.5 286 1 

⋮ ⋮ ⋮ ⋮ 
277 275.75 199 1 

278 277.25 387 0 

279 279.25 465 1 

280 279.75 499 1 

281 281 266 1 

282 281.75 136 1 

⋮ ⋮ ⋮ ⋮ 
495 493.25 8 0 

496 496.75 320 0 

497 497 354 0 

498 497.25 466 0 

499 497.5 153 0 
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 Cognitive Diversity in Hearthstone Game Scoring Systems 

4.2.1 Rank-Score Characteristic (RSC) Function 

According to Hsu and Taksa [22], we can predict the rank combinations of two models 

that are most likely to have better performance than the corresponding score combination prior 

to calculating the precision of each combination’s score and rank functions. To make such a 

prediction, we look at the Rank-Score Characteristic (RSC) function graph, which plots the score 

of each game vs. its rank. Under certain conditions, with the primary condition being high 

cognitive diversity, when combining two models with high cognitive diversity, we can expect 

that combination to have a more precise rank combination than score combination [22]. In this 

case, we should especially expect this result when combining systems C and E as indicated in 

Figure 4.2, Figure 4.3, and Table 4.33. Additionally, Figure 4.4 visualizes the cognitive 

diversity between each pair of the 5 individual scoring systems.   

Figure 4.2: Rank-Score Characteristic (RSC) Function Graphs 𝑓𝐴, 𝑓𝐵, 𝑓𝐶, 𝑓𝐷, and 𝑓𝐸  

for the Five Models A, B, C, D, and E, respectively for 500 Game Simulations 
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Figure 4.4: Cognitive Diversity Between All 10 Pairs of 5 Individual Models Illustrated 

Figure 4.3: Cognitive Diversity Between System C and System E Illustrated 
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 Performance Comparison 

Finally, once all score scombination and rank combination functions have been defined 

for all model combinations, we solve for the precision of each and plot them together as shown 

below in Figure 4.5.   

Table 4.33: Cognitive Diversity (CD) of Model Pairs 

Model Pair CD 

CE 2.085976 

BC 1.427536 

DE 1.235623 

AE 1.060047 

AC 1.046779 

CD 0.886772 

BE 0.742508 

BD 0.556233 

AB 0.497215 

AD 0.313584 
 

Figure 4.5: Score Combination vs. Rank Combination - Pre @ 291 
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4.3.1 Positive/Negative Precision Improvement 

According to [21, 23], the performance of the combination of two models X and Y is 

related to the cognitive diversity between, and the performance ratio of, X and Y. It is a positive 

case if the performance of the SC or RC combination is better than the best performing of the 

two systems X and Y. Otherwise, it is a negative case.    

Table 4.35.b: Negative Rank Combination 

Cases of 20 Combinations 

System Ratio Diversity 

RC(AC) 0.982079 0.413676 

RC(AD) 0.985612 0.0 

RC(AE) 0.985612 0.421162 

RC(CD) 0.996416 0.323398 
 

Table 4.34.a: Positive Rank Combination 

Cases of 20 Combinations 

System Ratio Diversity 

RC(AB) 0.985612 0.103607 

RC(BC) 0.996416 0.628502 

RC(BD) 1.0 0.136905 

RC(BE) 1.0 0.242003 

RC(CE) 0.996416 1.0 

RC(DE) 1.0 0.520223 
 

Table 4.34.b: Positive Score Combination 

Cases of 20 Combinations 

System Ratio Diversity 

SC(AB) 0.985612 0.103607 

SC(BD) 1.0 0.136905 

SC(BE) 1.0 0.242003 

SC(DE) 1.0 0.520223 
 

System Ratio Diversity 

SC(AC) 0.982079 0.413676 

SC(AD) 0.985612 0.0 

SC(AE) 0.985612 0.421162 

SC(BC) 0.996416 0.628502 

SC(CD) 0.996416 0.323398 

SC(CE) 0.996416 1.0 
 Table 4.35.b: Negative Score Combination 

Cases of 20 Combinations 

Figure 4.6:  Positive/Negative Cases for 2 Combinations - 20 Combinations 

(10 SC and 10 RC of two models) 

Diversity Threshold 



  30  

 

 Discussion 

 We can make three definitive conclusions from these results. First, the performance 

comparison shown in Figure 4.5 confirms our prediction that the rank combination of systems C 

and E would outperform the score combination of C and E. We also see similar results in the 

combinations of systems A and C, C and D, and B and C. Furthermore, the results illustrated in 

Figure 4.6 and its corresponding tables demonstrate that in this dataset, the combinations of 

models C and E and B and C seem to define a “diversity threshold” of 0.55. When a combination 

of two scoring systems crosses that threshold, the rank combination performs at least as well as 

the combination’s best performing component, while the score combination performs worse than 

its best performing component. 

Secondly, Figure 4.6 and the corresponding tables highlight that the performance when 

combining two models with similar performance and high diversity will improve upon the 

performance of the combination’s individual models. This is true for all models except for the 

combinations of A and B and C and D. Additionally, if we look at the positive/negative cases for 

all the two combinations that can be made from the best overall systems, the score combination 

of ABE and the rank combination of ABDE, all but AD and AE show a positive case with 

diversity below the threshold. 

Further analysis of Figure 4.5 reveals more insight into the relationship between 

individual models used in this project. First, Figure 4.5 shows that the combination of all 

models, ABCDE does not improve in performance over the best individual model. This should 

be expected given the low performance of most combinations of two models that include system 

A. Next, looking at the best performing models: the score combination of ABE and the rank 

combination of ABDE, we observe that both combinations outperform the best individual model, 
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C, without including C. This result demonstrates one of the key aspects of model diversity in this 

environment: that it is not the best individual that contributes to the best combination; rather it is 

the combination that prioritizes the best performing and most diverse individual models. 

Lastly, the score combination of ABE and the rank combination of ABDE outperform 

their most precise component, and are therefore the best candidates for a Hearthstone AI agent’s 

game-state scoring function and system refinement. As a final experiment, we refined the system 

by retraining the models with the top ranked games of SC(ABE), and then performed CFA on 

the retrained models. Prior to retraining we expected that some two-combination of A, B, and E 

would show even greater performance improvement than the original system. This prediciton 

was confirmed, as depicted in Figure 4.7, with the new score combination of systems B and E 

achieving a precision of over 98%. While this is possibly a result of overfitting, it is worth 

presenting as it followed our expectations and demonstrates a performance enhancement trend 

through iterative CFA. 

Figure 4.5: Performance of All Systems – Retrained with Top 291 Ranked Games of Original SC(ABE) 
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 Summary and Further Work 

 Summary 

Our application of combinatorial fusion analysis to Hearthstone game data is very 

promising. We proved that under certain conditions, the presence of cognitive diversity in 

Hearthstone scoring systems will produce a fused model that outperforms its individual 

components. Additionally, we demonstrated the power of CFA as an empirical performance 

comparison method for both model fusion and model selection with Hearthstone game-state data. 

Lastly, these data-driven results indicate that under the experimental conditions used to generate 

our dataset, a Hearthstone playing AI agent using the ABE score combination, the ABDE rank 

combination, or the retrained BE score combination scoring system should win over 96-98 times 

in 100 games.  

 Issues 

That said, our existing dataset places limitations on the system in its current state that we 

could solve in future work. 

5.2.1 Small Dataset 

Many of the previous projects described in Section 2.2.2 use datasets with thousands, or 

tens of thousands of games. The authors of [7] built their own simulator that could reach speeds 

of 30k games per second, which obliterates our SabberStone environment’s rate of 500 games in 

about six hours. So, although 5-fold cross validation was used in training the individual models, 

the high performance suggests possible overfitting. 

5.2.2 Narrow Dataset 

Our dataset is extremely narrow for three primary reasons: 
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• It only includes games between two of Hearthstone’s nine hero classes, and we only 

perform analysis on one of those heroes. Even a casual Hearthstone player recognizes 

the nuances of playing with each hero class, and how class abilities and synergies 

affect a player’s strategy.  

• We only used one deck each for the hero classes we tested. Hero class, deck, strategy, 

and opponent reciprocally influence one another. By holding hero class, deck, and 

opponent constant, our system learns the best strategy when playing with a specific 

deck against a specific opponent. And it is therefore unlikely that our system would 

fit if we changed one of those constants without retraining the models.  

• We used one bot—albeit with parameters set specifically for each hero class—to 

construct our dataset. This runs the risk of our model only learning how to beat a 

specific AI opponent, which might not be superior to other Hearthstone playing AIs, 

let alone a human opponent. 

 Possible Future Work 

5.3.1 Ideal Dataset 

While these issues must be acknowledged, the results we have presented in this work are 

both valid and valuable. Our system is inherently scalable as it is built from scalable machine 

learning models. Therefore, with an ideal dataset, we have demonstrated that CFA alone could 

potentially produce a versatile and superior Hearthstone playing AI agent. The ideal dataset 

would need to have the following characteristics: 

• Large number of games: As the size of the dataset increases, so should the 

performance of the system. 
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• Real, competitive games: A dataset including real game data between players in the 

top 18.3% of Hearthstone’s player rankings would be an excellent starting point for 

developing an AI agent with superhuman skill [41]. 

• Comprehensive and diverse: Such a dataset would need to include games between 

each combinatorial combination of the 9 hero classes playing with a wide variety of 

decks. This would allow for further development of our system so that it would learn 

the general, optimal playing strategy for each hero class against each opponent, which 

in turn could be honed for specific decks. 

5.3.2 Boosting Monte Carlo 

In addition to—or instead of—a dataset that is even close to this ideal, we have 

demonstrated that we could use our CFA methods to boost Monte Carlo Tree Search for 

Hearthstone. As previously explained, one of the primary reasons MCTS is the most popular 

algorithm used for Hearthstone, and overall game playing, is that it is designed to mitigate 

uncertainty and capitalize on probability. However, where MCTS falls short is that its success 

relies on the development of a strong mitigation strategy. Therefore, our CFA methods could 

boost MCTS in two ways: 

• To choose and refine the best MCTS strategy, possibly using SC(ABE), RC(ABDE), 

or the retrained SC(BE) as the exploitation factor of the Upper Confidence bound 

applied to Trees formula, and/or 

• To combine multiple strategies and/or a different set of initial models. 

Such an algorithm could potentially produce a Hearthstone playing AI agent capable of 

competing with the best existing individual models and possibly with the best human players. 
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Appendix A  –  Hearthstone: A Beginner’s Guide 

This Appendix provides a complete overview of Hearthstone, its rules, and its mechanics. 

In order to understand our system and how combinatorial fusion analysis can be applied to 

Hearthstone, readers must understand the game’s core concepts. While the density of the 

following sections may be intimidating, in practice, and as previously stated, this game is easy to 

learn, but hard to master. Therefore, we suggest downloading Hearthstone to your computer or 

mobile device and playing for a short period to supplement or replace this section. 

A.1. Gameplay Summary 

Adapted from [42] and [9] 

Each Hearthstone match is played as a one-on-one duel between two opponents. 

Gameplay in Hearthstone is turn-based, with players alternating playing cards from their hand to 

cast spells, equip weapons, or summon minions to do battle on their behalf. 

Players are represented by their selected hero. Each hero is associated with a hero class, 

which specifies a unique set of cards available for deck construction, and a unique hero power 

that can be used during gameplay. At the start of a duel, a hero has 30 health points. A hero’s 

health is always displayed in the blood drop on the character portrait as shown in Figure A.1. 

When a hero’s health is reduced to zero, the controlling player loses. 

Thus the goal of a Hearthstone game is straightforward—although 

difficult to achieve—reduce your enemy’s health to zero. 

At the start of each turn, the current player draws the top card 

from their deck: a collection of 30 cards assembled and then shuffled 

before play begins. Players can choose to play using one of several 

pre-assembled decks, or to construct and play with a custom Figure A.1: Hearthstone hero Uther 

Lightbringer, Paladin Hero Class 
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deck. Most cards are Neutral, meaning that they can be included in any deck. However, as 

explained previously, a substantial portion of cards are limited to a specific class, giving each 

hero their own strengths and unique abilities. 

During a player’s turn, that player attempt to play any of their cards, use their hero 

power, use minions to attack targets, or use their hero to attack directly if they have a weapon 

equipped or an attack value. Most actions, however, such as playing cards, require the player to 

spend mana crystals. Mana is the limiting resource that forces players to strategically plan out 

their moves. Players starts the game with 1 mana crystal and gains one additional mana crystal at 

the start of their turn up to the maximum of 10 mana crystals. Furthermore, at the start of a 

player’s turn, their mana crystals are fully restored. Any unspent mana remaining at the end of 

the turn does not carry over to the next. So, for example, Player A starts his turn with five mana 

crystals. On his turn, he uses four mana. On his next turn, his five mana crystals are restored, and 

he gains one additional mana crystal for a total of six to be used on his turn. It should be clear 

that as the game progresses, players have access to more mana crystals, which allows them to 

play more cards per turn, or cards with higher costs. 

Hearthstone features multiple strategic elements that players must master to play 

competitively. The positioning and control of minions, assigning accurate strategic importance to 

various variables, capitalizing on complex card synergies and interactions, and working around a 

shuffled deck are some of aspects that combine to make Hearthstone an intricate game. 

A.2. Battlefield 

The game takes place on a game board called the battlefield. Figure A.2 shows an 

example. The battlefield is the user interface for a game of Hearthstone and contains all 

important elements required to play such as the player’s hand, deck, mana crystals, minions, and 
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hero. The battlefield is always shown from your perspective with your minions, hero, hand, deck, 

and mana crystals all located in the bottom half. All elements are mirrored for the opponent in 

the top half of the battlefield, but your opponent sees everything from their perspective (in the 

bottom half). 

A.3. Order of Play 

A.3.1. Start of Game 

Before the game begins, a coin toss decides which player goes first. Players are then 

shown cards randomly drawn from their own deck (three cards for the player going first, four 

cards for the player going second). Players then choose to keep or replace these cards 

Figure A.2: Battlefield 
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individually. This is called the mulligan (Figure A.3). Cards are replaced randomly from a 

player’s deck, and the replaced cards are shuffled back into the player’s deck. In addition to 

starting with an extra card, the player going second also receives the coin from the coin toss as a 

special card. “The Coin” can be used at any time granting the player one extra full mana crystal 

until the end of the turn. These two extra cards serve to offset the inherent disadvantage of going 

second. 

A.3.2. On Your Turn 

At the start of each turn, players draw the top card from their deck, their mana crystals 

are refreshed, and they gain one additional mana crystal (up to the maximum of ten). 

Additionally, a player can have a maximum of ten cards in their hand. Any cards drawn with a 

full hand are revealed to both players, and then destroyed. 

Figure A.3: Mulligan 
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During your turn you can play any of your cards, such as minions, spells, and weapons, 

provided you have enough mana. Playing a card will consume the amount of mana indicated at 

the top-left corner of the card. You are also able to command your minions to attack, use your 

hero's hero power, or use your hero to attack targets directly if your hero has an attack value 

(usually granted by having a weapon equipped, but can be achieved in other ways). 

Players have 75 seconds to complete their turn but can elect to end their turn at any point 

before the time limit. After 75 seconds, the turn automatically ends. 

If a player attempts to draw cards when there are none remaining in their deck, they will 

take fatigue damage. Fatigue damage starts at one and increments by one every time a player 

attempts to draw cards from an empty deck. 

A.3.3. Conclusion of a Match 

A duel ends when one of the following conditions is met: 

• One of the players' heroes reaches zero health (or below) and is 

destroyed. The remaining player is the victor. 

• One of the players achieves a victory condition specified by a 

card or hero power (see Figure A.4). 

• A player concedes (see below) or leaves the game, the other player wins. 

• Both heroes' health reaches zero at the same time, the game ends in a draw. 

• The game reaches the 90th turn, the game ends in a draw.  

Figure A.4: The Four 

Horsemen Hero Power 
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Appendix B  –  Calculating the Number of Possible Moves on a Turn 

B.1. Number of Possible Attacking Moves 

The number of possible attacking moves player 𝑥 can execute is equal to 𝐴𝑥 and is 

defined as follows: 

Where 𝐶𝑦 is the number of characters controlled by opponent 𝑦 that can be attacked, and 𝐶𝑥 is 

the number of characters controlled by player 𝑥 that can attack. A character can attack if and 

only if it has an attack value ≥ 0, it is not exhausted, and it is not frozen. 𝐶𝑦 is found according to 

the following filter: 

B.1.1. Maximum Value of 𝐴𝑥 

In practice, the scenario that produces the maximum value of 𝐴𝑥 = 88 is not uncommon 

and has the following characteristics: 

• Both players control 7 minions 

• The attacking player’s hero has an attack value greater than zero 

• The opponent does not have any stealth or taunt minions 

  

𝐴𝑥 = 𝐶𝑦
𝐶𝑥 

Equation B.1.1: Number of Possible Attacking Moves 

𝐶𝑦 = {
the number of taunt minions

  All characters controlled by 𝑦 that do not have stealth
    

𝑦 controls taunt minions
otherwise

 

Equation B.1.2: Filter for Attackable Minions 
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B.2. Number of Possible Orders of Attack 

The number of possible orders in which player 𝑥 can execute 𝐴𝑥 attacks is equal to the 

total permutations of the 𝑇 number of attacks player 𝑚 can execute. 𝑇 is equal to the sum of the 

number of attacks each character controlled by player 𝑥 that can attack can make. 

B.2.1. Maximum Value of 𝑇 

In a real game, the probability of seeing the scenario that produces the maximum value of 

𝑇 = 30 is incredibly small. Nonetheless, such a scenario exists and has the following 

characteristics: 

• The attacking player controls “Whirlwind Tempest” which gives minions with 

windfury mega-windfury (allowing them to attack 4 times instead of twice) 

• The attacking player has given “Whirlwind Tempest” windfury 

• The attacking player controls 6 windfury minions in addition to “Whirlwind 

Tempest” 

• The attacking player’s hero has “Doomhammer” equipped, thus granting the hero 

windfury 

• Only the last of the 30 attacks can be lethal (the attacking player cannot win with 

prior to the 30th attack) 
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B.3. Number of Targets, Playable Cards, and Order of Playable Cards 

B.3.1. Maximum Number of Targetable Characters 

The number of targetable characters 𝑀 is equal to the total number of characters that do 

not have cannot be targeted by spells or hero powers or stealth abilities. Like 𝐴𝑥, a scenario that 

produces the maximum value of 𝑀 = 16 is not uncommon and has the following characteristics: 

• Both players control 7 minions 

• Neither hero, nor any of the minions in play have cannot be targeted by spells or 

hero powers or stealth abilities 

B.3.2. Maximum Number of Playable Cards 

The number of playable cards 𝑃 is simply the number of cards a player can afford to play 

according to the cost of each card and the player’s available mana crystals. There are many 

scenarios that could produce the value of 𝑃 = +∞. But, for the sake of useful mathematical 

expressions, we use the maximum value of  𝑃 = 10, which is also not uncommon and has the 

following characteristics: the current player has 10 mana crystals, holds 10 spells in their hand 

that each cost 1 mana and neither require a target nor have conditional playability.



 

47 

Appendix C  –  Decks Used for Dataset Construction 

 

Figure C.1.a: Basic Paladin Deck Figure C.1.b: Basic Mage Deck 
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Appendix D  –  Score and Rank Combination Tables 

Rank s(SC(AB)) Game W/L 

0 1 255 1 

1 0.902508 333 1 

2 0.899958 122 1 

3 0.886007 286 1 

⋮ ⋮ ⋮ ⋮ 
277 0.54357 29 1 

278 0.533275 197 1 

279 0.532594 499 1 

280 0.532549 136 1 

281 0.532078 199 1 

282 0.529764 232 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0573492 8 0 

496 0.0454573 320 0 

497 0.0403025 153 0 

498 0.0379372 354 0 

499 0.0255369 466 0 
 Table 4.7.a: RSC Function of the 

Score Combination - System AB 

Rank s(RC(AB)) Game W/L 

0 0 255 1 

1 3 333 1 

2 3 122 1 

3 3.5 286 1 

⋮ ⋮ ⋮ ⋮ 
277 278.5 29 1 

278 280 197 1 

279 280.5 499 1 

280 282 199 1 

281 283 232 1 

282 284.5 266 1 

⋮ ⋮ ⋮ ⋮ 
495 495.5 8 0 

496 497 354 0 

497 497 153 0 

498 497 320 0 

499 497.5 466 0 

 Table 4.7.b: RSC Function of the 

Rank Combination - System AB 

Rank s(SC(AC)) Game W/L 

0 1 255 1 

1 0.853377 286 1 

2 0.848633 122 1 

3 0.845192 455 1 

⋮ ⋮ ⋮ ⋮ 
277 0.506977 69 0 

278 0.506696 117 1 

279 0.505509 307 1 

280 0.502905 197 1 

281 0.499275 281 0 

282 0.494425 30 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0591909 466 0 

496 0.0461776 8 0 

497 0.0432641 153 0 

498 0.0232394 320 0 

499 0 354 0 

 
Table 4.8.a: RSC Function of the 

Score Combination - System AC 

Rank s(RC(AC)) Game W/L 

0 0 255 1 

1 3.5 286 1 

2 3.5 122 1 

3 4.5 455 1 

⋮ ⋮ ⋮ ⋮ 
277 277.5 307 1 

278 278 75 1 

279 278.5 197 1 

280 278.5 117 1 

281 281 281 0 

282 281 30 0 

⋮ ⋮ ⋮ ⋮ 
495 494 443 0 

496 496 153 0 

497 496 8 0 

498 497 320 0 

499 499 354 0 

 
Table 4.8.b: RSC Function of the 

Rank Combination - System AC 
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Rank s(SC(AD)) Game W/L 

0 1 255 1 

1 0.879185 286 1 

2 0.878664 122 1 

3 0.869431 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.528322 499 1 

278 0.527786 117 1 

279 0.527221 32 1 

280 0.524425 69 0 

281 0.5228 421 0 

282 0.519469 281 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0565967 466 0 

496 0.048756 8 0 

497 0.0403025 153 0 

498 0.0296797 320 0 

499 0.0201765 354 0 

 Table 4.9.a: RSC Function of the 

Score Combination - System AD 

Rank s(RC(AD)) Game W/L 

0 0 255 1 

1 2.5 286 1 

2 3 333 1 

3 3 122 1 

⋮ ⋮ ⋮ ⋮ 
277 277 69 0 

278 277 117 1 

279 277 465 1 

280 277 29 1 

281 279 421 0 

282 280.5 197 1 

⋮ ⋮ ⋮ ⋮ 
495 496 8 0 

496 496 466 0 

497 497 153 0 

498 497.5 320 0 

499 497.5 354 0 

 Table 4.9.b: RSC Function of the 

Rank Combination - System AD 

Rank s(SC(AE)) Game W/L 

0 1 255 1 

1 0.930107 333 1 

2 0.924177 122 1 

3 0.918089 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.563246 387 0 

278 0.561332 199 1 

279 0.561032 136 1 

280 0.555678 465 1 

281 0.555518 266 1 

282 0.548666 69 0 

⋮ ⋮ ⋮ ⋮ 
495 0.131685 443 0 

496 0.0787013 153 0 

497 0.0636502 320 0 

498 0.0261532 354 0 

499 0.018453 466 0 

 
Table 4.10.a: RSC Function of the 

Score Combination - System AE 

Rank s(RC(AE)) Game W/L 

0 0 255 1 

1 3 286 1 

2 3 122 1 

3 3.5 333 1 

⋮ ⋮ ⋮ ⋮ 
277 276.5 117 1 

278 279 424 1 

279 280.5 136 1 

280 280.5 266 1 

281 281.5 465 1 

282 282.5 69 0 

⋮ ⋮ ⋮ ⋮ 
495 492.5 228 0 

496 496 153 0 

497 497 320 0 

498 498 466 0 

499 498.5 354 0 

 
Table 4.10.b: RSC Function of the 

Rank Combination - System AE 
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Rank s(SC(BC)) Game W/L 

0 1 255 1 

1 0.885157 122 1 

2 0.852654 333 1 

3 0.851758 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.516704 251 1 

278 0.516045 281 0 

279 0.516041 56 0 

280 0.5153 136 1 

281 0.504368 232 1 

282 0.501562 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0478218 466 0 

496 0.0449323 320 0 

497 0.0379372 354 0 

498 0.0141886 8 0 

499 0.00296164 153 0 

 Table 4.11.a: RSC Function of the 

Score Combination - System BC 

Rank s(RC(BC)) Game W/L 

0 0 255 1 

1 1.5 122 1 

2 3.5 162 1 

3 4.5 333 1 

⋮ ⋮ ⋮ ⋮ 
277 275.5 56 0 

278 276 29 1 

279 277.5 281 0 

280 279 136 1 

281 280.5 232 1 

282 281.5 266 1 

⋮ ⋮ ⋮ ⋮ 
495 494 466 0 

496 496 320 0 

497 497 354 0 

498 497.5 8 0 

499 498 153 0 

 Table 4.11.b: RSC Function of the 

Rank Combination - System BC 

Rank s(SC(BD)) Game W/L 

0 1 255 1 

1 0.915188 122 1 

2 0.883228 333 1 

3 0.87014 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.536238 281 0 

278 0.532894 232 1 

279 0.532095 56 0 

280 0.531149 29 1 

281 0.52994 387 0 

282 0.527117 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0581137 354 0 

496 0.0513725 320 0 

497 0.0452276 466 0 

498 0.0167669 8 0 

499 0 153 0 

 
Table 4.12.a: RSC Function of the 

Score Combination - System BD 

Rank s(RC(BD)) Game W/L 

0 0 255 1 

1 1 122 1 

2 2 333 1 

3 3.5 162 1 

⋮ ⋮ ⋮ ⋮ 
277 277.5 232 1 

278 277.5 281 0 

279 278 56 0 

280 278.5 29 1 

281 279 387 0 

282 281 421 0 

⋮ ⋮ ⋮ ⋮ 
495 495.5 354 0 

496 496.5 320 0 

497 496.5 466 0 

498 497.5 8 0 

499 499 153 0 

 
Table 4.12.b: RSC Function of the 

Rank Combination - System BD 
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Rank s(SC(BE)) Game W/L 

0 1 255 1 

1 0.960701 122 1 

2 0.943904 333 1 

3 0.935326 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.577104 49 0 

278 0.574424 26 0 

279 0.565932 263 1 

280 0.563562 465 1 

281 0.562526 268 1 

282 0.562006 232 1 

⋮ ⋮ ⋮ ⋮ 
495 0.113791 249 0 

496 0.085343 320 0 

497 0.0640904 354 0 

498 0.0383988 153 0 

499 0.00708389 466 0 

 Table 4.13.a: RSC Function of the 

Score Combination - System BE 

Rank s(RC(BE)) Game W/L 

0 0 255 1 

1 1 122 1 

2 2.5 162 1 

3 2.5 333 1 

⋮ ⋮ ⋮ ⋮ 
277 274 49 0 

278 276 26 0 

279 280.5 263 1 

280 280.5 232 1 

281 281.5 465 1 

282 282 7 0 

⋮ ⋮ ⋮ ⋮ 
495 494 249 0 

496 496 320 0 

497 496.5 354 0 

498 498 153 0 

499 498.5 466 0 

 Table 4.13.b: RSC Function of the 

Rank Combination - System BE 

Rank s(SC(CD)) Game W/L 

0 1 255 1 

1 0.863864 122 1 

2 0.837344 426 1 

3 0.827023 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.498691 307 1 

278 0.497058 199 1 

279 0.495139 56 0 

280 0.494132 251 1 

281 0.489298 387 0 

282 0.487759 62 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0788817 466 0 

496 0.0291547 320 0 

497 0.0201765 354 0 

498 0.00559542 8 0 

499 0.00296164 153 0 

 Table 4.14.a: RSC Function of the 

Score Combination - System CD 

Rank s(RC(CD)) Game W/L 

0 0 255 1 

1 1.5 122 1 

2 4 162 1 

3 4 286 1 

⋮ ⋮ ⋮ ⋮ 
277 276.5 22 1 

278 278.5 199 1 

279 278.5 251 1 

280 278.5 56 0 

281 279.5 387 0 

282 281.5 62 0 

⋮ ⋮ ⋮ ⋮ 
495 493 254 0 

496 496.5 320 0 

497 497.5 354 0 

498 498 153 0 

499 498 8 0 

 Table 4.14.b: RSC Function of the 

Rank Combination - System CD 
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Rank s(SC(CE)) Game W/L 

0 1 255 1 

1 0.909377 122 1 

2 0.892209 162 1 

3 0.880252 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.54125 32 1 

278 0.539496 421 0 

279 0.537344 233 1 

280 0.536825 499 1 

281 0.532157 281 0 

282 0.529212 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.104352 8 0 

496 0.0631252 320 0 

497 0.0413605 153 0 

498 0.0407379 466 0 

499 0.0261532 354 0 

 Table 4.15.a: RSC Function of the 

Score Combination - System CE 

Rank s(RC(CE)) Game W/L 

0 0 255 1 

1 1.5 122 1 

2 3 162 1 

3 4.5 286 1 

⋮ ⋮ ⋮ ⋮ 
277 274 26 0 

278 274.5 136 1 

279 276 499 1 

280 276.5 233 1 

281 277.5 266 1 

282 278 281 0 

⋮ ⋮ ⋮ ⋮ 
495 493 208 0 

496 494.5 466 0 

497 496 320 0 

498 497 153 0 

499 498.5 354 0 

 Table 4.15.b: RSC Function of the 

Rank Combination - System CE 

Rank s(SC(DE)) Game W/L 

0 1 255 1 

1 0.939408 122 1 

2 0.910826 333 1 

3 0.910591 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.565339 29 1 

278 0.561984 56 0 

279 0.554767 266 1 

280 0.553224 136 1 

281 0.552351 281 0 

282 0.550749 499 1 

⋮ ⋮ ⋮ ⋮ 
495 0.10693 8 0 

496 0.0695654 320 0 

497 0.0463297 354 0 

498 0.0383988 153 0 

499 0.0381437 466 0 

 Table 4.16.a: RSC Function of the 

Score Combination - System DE 

Rank s(RC(DE)) Game W/L 

0 0 255 1 

1 1 122 1 

2 2.5 333 1 

3 3 162 1 

⋮ ⋮ ⋮ ⋮ 
277 273.5 465 1 

278 274 56 0 

279 277.5 266 1 

280 278 281 0 

281 278.5 136 1 

282 279 499 1 

⋮ ⋮ ⋮ ⋮ 
495 494 249 0 

496 496.5 320 0 

497 497 354 0 

498 497 466 0 

499 498 153 0 

 Table 4.16.b: RSC Function of the 

Rank Combination - System DE 
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Rank s(SC(ABC)) Game W/L 

0 1 255 1 

1 0.877916 122 1 

2 0.864673 333 1 

3 0.856643 286 1 

⋮ ⋮ ⋮ ⋮ 
277 0.5225 136 1 

278 0.521228 197 1 

279 0.518621 387 0 

280 0.513898 199 1 

281 0.51202 421 0 

282 0.51031 281 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0441832 466 0 

496 0.0392385 8 0 

497 0.0378763 320 0 

498 0.0288427 153 0 

499 0.0252914 354 0 

 Table 4.17.a: RSC Function of the 

Score Combination - System ABC 

Rank s(RC(ABC)) Game W/L 

0 0 255 1 

1 2.66667 122 1 

2 4 286 1 

3 4.33333 333 1 

⋮ ⋮ ⋮ ⋮ 
277 276.667 197 1 

278 276.667 387 0 

279 279 136 1 

280 280.333 199 1 

281 281.667 421 0 

282 283 281 0 

⋮ ⋮ ⋮ ⋮ 
495 495 466 0 

496 496.333 8 0 

497 496.667 320 0 

498 497 153 0 

499 497.667 354 0 

 Table 4.17.b: RSC Function of the 

Rank Combination - System ABC 

Rank s(SC(ABD)) Game W/L 

0 1 255 1 

1 0.897937 122 1 

2 0.885056 333 1 

3 0.873848 286 1 

⋮ ⋮ ⋮ ⋮ 
277 0.532688 421 0 

278 0.532037 32 1 

279 0.531173 197 1 

280 0.530521 465 1 

281 0.528793 136 1 

282 0.526912 199 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0424537 466 0 

496 0.0421698 320 0 

497 0.0409574 8 0 

498 0.0387425 354 0 

499 0.0268683 153 0 

 Table 4.18.a: RSC Function of the 

Score Combination - System ABD 

Rank s(RC(ABD)) Game W/L 

0 0 255 1 

1 2.33333 122 1 

2 2.66667 333 1 

3 3.33333 286 1 

⋮ ⋮ ⋮ ⋮ 
277 278 421 0 

278 278 197 1 

279 278 29 1 

280 279.667 465 1 

281 281.333 199 1 

282 281.667 136 1 

⋮ ⋮ ⋮ ⋮ 
495 496.333 8 0 

496 496.667 354 0 

497 496.667 466 0 

498 497 320 0 

499 497.667 153 0 

 Table 4.18.b: RSC Function of the 

Rank Combination - System ABD 
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Rank s(SC(ACD)) Game W/L 

0 1 255 1 

1 0.863721 122 1 

2 0.852095 286 1 

3 0.842622 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.514335 307 1 

278 0.512882 281 0 

279 0.512232 387 0 

280 0.510926 197 1 

281 0.498875 199 1 

282 0.498831 69 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0648898 466 0 

496 0.0335097 8 0 

497 0.0288427 153 0 

498 0.0273579 320 0 

499 0.013451 354 0 

 Table 4.20.a: RSC Function of the 

Score Combination - System ACD 

Rank s(RC(ACD)) Game W/L 

0 0 255 1 

1 2.66667 122 1 

2 3.33333 286 1 

3 4.33333 333 1 

⋮ ⋮ ⋮ ⋮ 
277 275.667 117 1 

278 276 307 1 

279 276.667 281 0 

280 277 197 1 

281 281 69 0 

282 283 199 1 

⋮ ⋮ ⋮ ⋮ 
495 494 466 0 

496 496.667 8 0 

497 497 153 0 

498 497 320 0 

499 498 354 0 

 Table 4.20.b: RSC Function of the 

Rank Combination - System ACD 

Rank s(SC(ACE)) Game W/L 

0 1 255 1 

1 0.894063 122 1 

2 0.883072 333 1 

3 0.881606 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.541489 136 1 

278 0.54127 117 1 

279 0.5334 199 1 

280 0.531306 499 1 

281 0.528245 387 0 

282 0.521052 281 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0993474 8 0 

496 0.054442 153 0 

497 0.0500049 320 0 

498 0.0394606 466 0 

499 0.0174355 354 0 

 Table 4.21.a: RSC Function of the 

Score Combination - System ACE 

Rank s(RC(ACE)) Game W/L 

0 0 255 1 

1 2.66667 122 1 

2 3.66667 286 1 

3 4.33333 162 1 

⋮ ⋮ ⋮ ⋮ 
277 275.333 117 1 

278 276 136 1 

279 276 199 1 

280 278 499 1 

281 278 387 0 

282 282 266 1 

⋮ ⋮ ⋮ ⋮ 
495 492.667 228 0 

496 495.333 466 0 

497 496.333 153 0 

498 496.667 320 0 

499 498.667 354 0 

 Table 4.21.b: RSC Function of the 

Rank Combination - System ACE 
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Rank s(SC(ADE)) Game W/L 

0 1 255 1 

1 0.914083 122 1 

2 0.903455 333 1 

3 0.893861 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.550331 465 1 

278 0.54895 387 0 

279 0.547782 136 1 

280 0.546415 199 1 

281 0.540588 499 1 

282 0.538067 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.101066 8 0 

496 0.0542984 320 0 

497 0.0524675 153 0 

498 0.0377311 466 0 

499 0.0308865 354 0 

 Table 4.22.a: RSC Function of the 

Score Combination - System ADE 

Rank s(RC(ADE)) Game W/L 

0 0 255 1 

1 2.33333 122 1 

2 3 333 1 

3 3 286 1 

⋮ ⋮ ⋮ ⋮ 
277 275.667 387 0 

278 277 199 1 

279 277.333 465 1 

280 278.667 136 1 

281 280 499 1 

282 282 266 1 

⋮ ⋮ ⋮ ⋮ 
495 492 249 0 

496 497 320 0 

497 497 466 0 

498 497 153 0 

499 497.667 354 0 

 Table 4.22.b: RSC Function of the 

Rank Combination - System ADE 

Rank s(SC(BCD)) Game W/L 

0 1 255 1 

1 0.88807 122 1 

2 0.85182 333 1 

3 0.84964 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.518589 199 1 

278 0.517294 136 1 

279 0.517169 251 1 

280 0.514425 56 0 

281 0.50604 387 0 

282 0.504021 232 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0573104 466 0 

496 0.0418198 320 0 

497 0.0387425 354 0 

498 0.0121836 8 0 

499 0.00197442 153 0 

 Table 4.23.a: RSC Function of the 

Score Combination - System BCD 

Rank s(RC(BCD)) Game W/L 

0 0 255 1 

1 1.33333 122 1 

2 3.66667 333 1 

3 3.66667 162 1 

⋮ ⋮ ⋮ ⋮ 
277 276.333 29 1 

278 276.333 199 1 

279 277.333 56 0 

280 277.667 136 1 

281 280.333 387 0 

282 281.667 232 1 

⋮ ⋮ ⋮ ⋮ 
495 494.333 466 0 

496 496.333 320 0 

497 496.667 354 0 

498 497.667 8 0 

499 498.333 153 0 

 Table 4.23.b: RSC Function of the 

Rank Combination - System BCD 
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Table 4.24.a: RSC Function of the 

Score Combination - System BCE 

Rank s(SC(BCE)) Game W/L 

0 1 255 1 

1 0.918412 122 1 

2 0.893097 162 1 

3 0.89227 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.543818 421 0 

278 0.541389 32 1 

279 0.539524 499 1 

280 0.538588 136 1 

281 0.537048 197 1 

282 0.536498 266 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0780214 8 0 

496 0.0644668 320 0 

497 0.0427269 354 0 

498 0.0318812 466 0 

499 0.0275736 153 0 

 Table 4.24.b: RSC Function of the 

Rank Combination - System BCE 

Rank s(RC(BCE)) Game W/L 

0 0 255 1 

1 1.33333 122 1 

2 3 162 1 

3 4 333 1 

⋮ ⋮ ⋮ ⋮ 
277 272.667 56 0 

278 273.333 29 1 

279 277 499 1 

280 277.667 266 1 

281 279 197 1 

282 280 136 1 

⋮ ⋮ ⋮ ⋮ 
495 493 249 0 

496 495.667 466 0 

497 496 320 0 

498 497.333 354 0 

499 497.667 153 0 

 

Table 4.25.a: RSC Function of the 

Score Combination - System BDE 

Rank s(SC(BDE)) Game W/L 

0 1 255 1 

1 0.938432 122 1 

2 0.912653 333 1 

3 0.905352 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.55804 29 1 

278 0.555587 465 1 

279 0.553535 266 1 

280 0.548807 499 1 

281 0.546993 197 1 

282 0.545694 281 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0797403 8 0 

496 0.0687603 320 0 

497 0.0561779 354 0 

498 0.0301517 466 0 

499 0.0255992 153 0 

 Table 4.25.b: RSC Function of the 

Rank Combination - System BDE 

Rank s(RC(BDE)) Game W/L 

0 0 255 1 

1 1 122 1 

2 2.33333 333 1 

3 3 162 1 

⋮ ⋮ ⋮ ⋮ 
277 275 29 1 

278 277.333 465 1 

279 277.667 266 1 

280 279 499 1 

281 280.333 197 1 

282 281 281 0 

⋮ ⋮ ⋮ ⋮ 
495 494 249 0 

496 496.333 320 0 

497 496.333 354 0 

498 497.333 466 0 

499 498.333 153 0 
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Table 4.26.a: RSC Function of the 

Score Combination - System CDE 

Rank s(SC(CDE)) Game W/L 

0 1 255 1 

1 0.904216 122 1 

2 0.876608 162 1 

3 0.870219 333 1 

⋮ ⋮ ⋮ ⋮ 
277 0.534804 281 0 

278 0.534456 251 1 

279 0.534351 56 0 

280 0.526746 197 1 

281 0.525149 421 0 

282 0.524272 32 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0722926 8 0 

496 0.0539484 320 0 

497 0.0525878 466 0 

498 0.0308865 354 0 

499 0.0275736 153 0 

 Table 4.26.b: RSC Function of the 

Rank Combination - System CDE 

Rank s(RC(CDE)) Game W/L 

0 0 255 1 

1 1.33333 122 1 

2 3.33333 162 1 

3 4 286 1 

⋮ ⋮ ⋮ ⋮ 
277 274.333 499 1 

278 274.333 421 0 

279 274.667 281 0 

280 274.667 136 1 

281 274.667 56 0 

282 279.333 197 1 

⋮ ⋮ ⋮ ⋮ 
495 493.333 8 0 

496 494.667 466 0 

497 496.333 320 0 

498 497.667 354 0 

499 497.667 153 0 

 

Table 4.27.a: RSC Function of the 

Score Combination - System ABCD 

Rank s(SC(ABCD)) Game W/L 

0 1 255 1 

1 0.881911 122 1 

2 0.861043 333 1 

3 0.854865 286 1 

⋮ ⋮ ⋮ ⋮ 
277 0.522663 197 1 

278 0.522195 136 1 

279 0.519055 387 0 

280 0.517757 281 0 

281 0.514568 199 1 

282 0.508129 421 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0522093 466 0 

496 0.037306 320 0 

497 0.0314723 8 0 

498 0.0290568 354 0 

499 0.0216321 153 0 

 Table 4.27.b: RSC Function of the 

Rank Combination - System ABCD 

Rank s(RC(ABCD)) Game W/L 

0 0 255 1 

1 2.25 122 1 

2 3.75 286 1 

3 3.75 333 1 

⋮ ⋮ ⋮ ⋮ 
277 276.5 29 1 

278 276.5 387 0 

279 278 136 1 

280 279.25 281 0 

281 280.25 199 1 

282 282.75 421 0 

⋮ ⋮ ⋮ ⋮ 
495 495 466 0 

496 496.75 320 0 

497 496.75 8 0 

498 497.25 354 0 

499 497.5 153 0 
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Table 4.28.a: RSC Function of the 

Score Combination - System ABCE 

Rank s(SC(ABCE)) Game W/L 

0 1 255 1 

1 0.904667 122 1 

2 0.89138 333 1 

3 0.884923 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.54515 421 0 

278 0.540463 199 1 

279 0.538166 136 1 

280 0.53471 499 1 

281 0.531064 387 0 

282 0.529955 197 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0808506 8 0 

496 0.0542912 320 0 

497 0.0408315 153 0 

498 0.0331374 466 0 

499 0.0320452 354 0 

 Table 4.28.b: RSC Function of the 

Rank Combination - System ABCE 

Rank s(RC(ABCE)) Game W/L 

0 0 255 1 

1 2.25 122 1 

2 4 333 1 

3 4 286 1 

⋮ ⋮ ⋮ ⋮ 
277 274.25 29 1 

278 275 199 1 

279 278.25 499 1 

280 279 387 0 

281 279.75 136 1 

282 281 266 1 

⋮ ⋮ ⋮ ⋮ 
495 493.25 8 0 

496 496 466 0 

497 496.5 320 0 

498 497 153 0 

499 497.75 354 0 

 

Table 4.30.a: RSC Function of the 

Score Combination - System ACDE 

Rank s(SC(ACDE)) Game W/L 

0 1 255 1 

1 0.894021 122 1 

2 0.874842 333 1 

3 0.872556 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.534235 32 1 

278 0.532574 499 1 

279 0.531148 421 0 

280 0.529195 199 1 

281 0.526272 387 0 

282 0.525813 281 0 

⋮ ⋮ ⋮ ⋮ 
495 0.076554 8 0 

496 0.0486673 466 0 

497 0.0464024 320 0 

498 0.0408315 153 0 

499 0.0231649 354 0 

 Table 4.30.b: RSC Function of the 

Rank Combination - System ACDE 

Rank s(RC(ACDE)) Game W/L 

0 0 255 1 

1 2.25 122 1 

2 3.5 286 1 

3 4 333 1 

⋮ ⋮ ⋮ ⋮ 
277 274 117 1 

278 275.75 136 1 

279 276.25 499 1 

280 277 199 1 

281 277.5 387 0 

282 279.5 281 0 

⋮ ⋮ ⋮ ⋮ 
495 493.5 8 0 

496 495.25 466 0 

497 496.75 320 0 

498 497 153 0 

499 498 354 0 
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Table 4.31.a: RSC Function of the 

Score Combination - System BCDE 

Rank s(SC(BCDE)) Game W/L 

0 1 255 1 

1 0.912283 122 1 

2 0.88174 333 1 

3 0.881174 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.538738 499 1 

278 0.534528 197 1 

279 0.534262 136 1 

280 0.534198 281 0 

281 0.531978 421 0 

282 0.528621 32 1 

⋮ ⋮ ⋮ ⋮ 
495 0.0605595 8 0 

496 0.0572488 320 0 

497 0.0429828 466 0 

498 0.0421335 354 0 

499 0.0206802 153 0 

 Table 4.31.b: RSC Function of the 

Rank Combination - System BCDE 

Rank s(RC(BCDE)) Game W/L 

0 0 255 1 

1 1.25 122 1 

2 3.25 162 1 

3 3.5 333 1 

⋮ ⋮ ⋮ ⋮ 
277 274.75 56 0 

278 274.75 421 0 

279 275.5 499 1 

280 277.75 197 1 

281 277.75 281 0 

282 278.75 136 1 

⋮ ⋮ ⋮ ⋮ 
495 494.25 8 0 

496 495.5 466 0 

497 496.25 320 0 

498 497 354 0 

499 498 153 0 

 

Table 4.32.a: RSC Function of the 

Score Combination - System ABCDE 

Rank s(SC(ABCDE)) Game W/L 

0 1 255 1 

1 0.902513 122 1 

2 0.883135 333 1 

3 0.87702 162 1 

⋮ ⋮ ⋮ ⋮ 
277 0.535686 199 1 

278 0.535411 421 0 

279 0.535043 499 1 

280 0.534789 136 1 

281 0.529358 197 1 

282 0.528923 387 0 

⋮ ⋮ ⋮ ⋮ 
495 0.0663152 8 0 

496 0.050552 320 0 

497 0.0417674 466 0 

498 0.0337068 354 0 

499 0.0326652 153 0 

 Table 4.32.b: RSC Function of the 

Rank Combination - System ABCDE 

Rank s(RC(ABCDE)) Game W/L 

0 0.166667 255 1 

1 1.83333 122 1 

2 3.16667 333 1 

3 3.33333 286 1 

⋮ ⋮ ⋮ ⋮ 
277 229.167 29 1 

278 230.167 199 1 

279 230.833 499 1 

280 232 387 0 

281 232.5 136 1 

282 233.167 197 1 

⋮ ⋮ ⋮ ⋮ 
495 411.833 8 0 

496 413.167 466 0 

497 413.833 320 0 

498 414.5 354 0 

499 414.5 153 0 
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